
McGill University

School of Computer Science

COMP 763

Ph.D. Student in the Modelling, Simulation and Design Lab

Eugene Syriani

1

COMP 763

OVERVIEW

2

 In the context

 In Theory: Timed Automata

– The language: Definitions and Semantics

– Model Checking and Implementation

 In Practice: UPPAAL

– Language Extensions

– Simulation and Verification

 Case Study

 Conclusion on the tool and on the language

COMP 763

IN THE CONTEXT

sala University (Sweden)
+

borg University (Denmark)
===============================

(SweDen)

3

Paul Petterson
Uppsala

Wang Yi
Uppsala

Kim G. Larsen
Aalborg

COMP 763

IN THE CONTEXT

• First released in 1995

• Power Tool: environment for modelling, simulation

and verification of real-time systems

• Types of System: non-deterministic processes with

finite control structure and real-valued clocks

• Typical Applications: real-time controllers and

communication protocols, where time is critical

4

COMP 763

IN THE CONTEXT

• Efficient model-checker with on-the-fly
searching technique

• Efficient verification with symbolic technique
manipulation and solving of constraints

• Facilitate modelling and debugging with
automatic generation of diagnostic traces
explaining the satisfaction of a property

• Visual (graphical) tracing through the simulator

The Technology

5

COMP 763

OVERVIEW

 In the context

 In Theory: Timed Automata

– The language: Definitions and Semantics

– Model Checking and Implementation

 In Practice: UPPAAL

– Language Extensions

– Simulation and Verification

 Case Study

 Conclusion on the tool and on the language
6

COMP 763

IN THEORY: TIMED AUTOMATA [1]

• Theory for modeling and verification of real
time systems

• Other formalisms:

– Timed Petri Nets [5]

– Timed Process Algebras [6,7,8]

– Real Time Logics [9,10]

• Model checkers built with timed automata:

– UPPAAL

– Kronos [11]

7[1] R. Alur and D. L. Dill. A theory of timed automata. Journal of Theoretical Computer Science, 126(2):183–235, 1994.

COMP 763

IN THEORY: TIMED AUTOMATA

Evolution

8

•Büchi-accepting
•Real-valued variables:
modelling clock
•Constraints on clock
variables and resets

•Clock variables
•Local invariant conditions
•Accept when invariant is
satisfied

•Infinite alphabet
•Initial and accepting
states
•Accept execution if pass
through accepting state
infinitely many times

typedef TimedSafetyAutomata TimedAutomata
[2] W. Thomas. Automata on infinite objects, in Van Leeuwen, Handbook of Theoretical Computer Science, pp. 133-164, Elsevier, 1990.

COMP 763

IN THEORY: TIMED AUTOMATA

• Variables model logical clocks in the system

– Initialized to 0

– Increase synchronously at the same rate

• Taking transition (delay or action)

– Necessary condition: clocks values satisfy guard on edge

– Action: clocks may be reset to 0

Behaviour

9

COMP 763

IN THEORY: TIMED AUTOMATA

A timed automaton is a tuple where:

•

•

•

•

Formal Definition

10

 𝑳, 𝒍𝟎, 𝐄, 𝐈

𝑳 is a finite set of locations

𝒍𝟎 ∈ 𝑳 is the initial location

𝑬 𝑳 × 𝕭 𝑪 × × 𝟐𝑪 × 𝑳 is the set of edges

𝑰: 𝑳 → 𝕭 𝑪 is the function mapping locations to

invariants on the clock elements

COMP 763

IN THEORY: TIMED AUTOMATA

Operational Semantics of a timed automaton is:

•

•

•Notation:

Formal Semantics

11

If 𝒖, 𝒖 + 𝒅 ∈ 𝑰 𝒍 and 𝒅 ∈ ℝ+,

then 𝒍, 𝒖
𝒅
→ 𝒍, 𝒖 + 𝒅

If 𝒍
𝝉,𝜶,𝒓
 𝒍′, 𝒖 ∈ 𝒈, 𝒖′ = 𝒓 ↦ 𝟎 𝒖 and 𝒖′ ∈ 𝑰 𝒍 ,

then 𝒍, 𝒖
𝜶
→ 𝒍′, 𝒖′

 𝒍, 𝒖 is a state

 𝒍, 𝒖
𝜶
→ 𝒍′, 𝒖′ is a transition

COMP 763

OVERVIEW

 In the context

 In Theory: Timed Automata

– The language: Definitions and Semantics

– Model Checking and Implementation

 In Practice: UPPAAL

– Language Extensions

– Simulation and Verification

 Case Study

 Conclusion on the tool and on the language
12

COMP 763

IN THEORY: TIMED AUTOMATA

• Reachability analysis:

– Safety: “something bad never happens”

– Liveness: “something good will eventually happen”

 loop detection

Model Checking

13

COMP 763

IN THEORY: TIMED AUTOMATA

• The state space of a timed model can be
represented by a zone graph (efficient region
graph)

• A zone is the maximal set of clock assignment
solution of clock constraints

• Zone graphs can be infinite: widening operation

• Zone graphs can be normalized to a canonical
representation

Model Checking

14

COMP 763

IN THEORY: TIMED AUTOMATA

• Zones can be efficiently represented in memory
as Difference Bound Matrices (DBM) [3]

• DBM store clock constraints in canonical form

•

Model Checking and Implementations

15

Clock 𝒈 ∈ 𝕭 𝑪 constraint is

𝒈 ∷= 𝒙~𝒎|𝒙 − 𝒚~𝒏|𝒈 ∧ 𝒈

where 𝒙, 𝒚 ∈ 𝑪, 𝒎, 𝒏 ∈ ℕ and ~ ∈ ≤, <, =, >, ≥

[3] J. Bengtsson and W. Yi . Timed Automata: Semantics, Algorithms and Tools. In Lecture Notes on Concurrency and Petri Nets. W. Reisig and G.
Rozenberg (eds.), LNCS 3098, Springer-Verlag, 2004.

COMP 763

IN THEORY: TIMED AUTOMATA

• DBM will represent any clock constraint of a
zone as:

Model Checking and Implementations

16

 If 𝒙𝒊 − 𝒙𝒋~𝒏 ∈ 𝑫, then 𝑫𝒊𝒋 = ~, 𝒏

 If 𝒙𝒊 − 𝒙𝒋 is unbounded, then 𝑫𝒊𝒋 = ∞

 Add 𝑫𝒊𝒊 = ≤, 𝟎 and 𝑫𝟎𝒊 = ≤, 𝟎

COMP 763

IN THEORY: TIMED AUTOMATA

Model Checking and Implementations

17

𝑴 𝑫 =

 𝟎, ≤ 𝟎, ≤ 𝟎, ≤ 𝟓, <
 𝟐𝟎, ≤ 𝟎, ≤ −𝟏𝟎, ≤ ∞
 𝟐𝟎, ≤ 𝟏𝟎, ≤ 𝟎, ≤ ∞

∞ ∞ ∞ 𝟎, ≤

𝑫 = 𝒙 − 𝟎 < 𝟐𝟎 ∧ 𝒚 − 𝟎 ≤ 𝟐𝟎 ∧ 𝒚 − 𝒙 ≤ 𝟏𝟎

 ∧ 𝒙 − 𝒚 ≤ −𝟏𝟎 ∧ 𝟎 − 𝒛 < 𝟓

COMP 763

IN THEORY: TIMED AUTOMATA

• Operations on DBMs:

Model Checking and Implementations

18

1. 𝒄𝒐𝒏𝒔𝒊𝒔𝒕𝒆𝒏𝒕(𝑫): checks if a DBM is consistent, a non-empty solution set.

Used for removing inconsistent states from an exploration (negative cycles).

2. 𝒓𝒆𝒍𝒂𝒕𝒊𝒐𝒏(𝑫, 𝑫′): checks if 𝑫 ⊆ 𝑫′. Used for combined inclusion checking.

3. 𝒔𝒂𝒕𝒊𝒔𝒇𝒊𝒆𝒅(𝑫, 𝒙𝒊 − 𝒙𝒋 ≤ 𝒎): checks if a zone satisfies a certain condition.

4. 𝒖𝒑(𝑫): computes the strongest post-condition of a zone.

5. 𝒅𝒐𝒘𝒏(𝑫): computes the weakest pre-condition of a zone.

6. 𝒂𝒏𝒅(𝑫, 𝒙𝒊 − 𝒙𝒋 ≤ 𝒎): add a constraint to a zone.

7. 𝒇𝒓𝒆𝒆(𝑫, 𝒙): remove all conditions on a clock in a zone.

8. 𝒓𝒆𝒔𝒆𝒕(𝑫, 𝒙 ≔ 𝒎): set the clock to a specific value.

9. 𝒄𝒐𝒑𝒚(𝑫, 𝒙 ≔ 𝒚): copy the value of one clock into another.

10. 𝒔𝒉𝒊𝒇𝒕(𝑫, 𝒙 ≔ 𝒙 + 𝒎): add or subtract a clock with an integer value.

COMP 763

OVERVIEW

 In the context

 In Theory: Timed Automata

– The language: Definitions and Semantics

– Model Checking and Implementation

 In Practice: UPPAAL

– Language Extensions

– Simulation and Verification

 Case Study

 Conclusion on the tool and on the language
19

COMP 763

IN PRACTICE: UPPAAL

UPPAAL, The Tool [4,5]

20

[4] G. Behrmannet al. Uppaal Implementation Secrets. In Proceedings of the 7th International Symposium on Formal Techniques in Real-Time and Fault Tolerant Systems, 2002.
[5] G. Behrmann, A. David, and K. G. Larsen. A Tutorial on Uppaal. In proceedings of the 4th International School on Formal Methods for the Design of Computer, Communication, and

Software Systems. LNCS 3185.

COMP 763

IN PRACTICE: UPPAAL

• Typed variables:
– Integer

– Clock

– Channel

– Constant

– Scalar (set)

– Array

– Meta-variable

– Record variable: structure

Language Extensions

21

COMP 763

IN PRACTICE: UPPAAL

• Functions (typed and untyped)

• For/While/Do loops, If-Else statements

• Operators

– All C operators: comparison, mathematical, assignment

– Wrapper operators: min, max, and, or, not, imply

– Quantifier: forall, exists

Language Extensions: A C syntax

22

COMP 763

IN PRACTICE: UPPAAL

• Template: extended time automaton

– Locations (extended)

– Edges (extended)

– Declarations

– Parameters

Language Extensions

23

COMP 763

IN PRACTICE: UPPAAL

• Urgent

– Atomic: freeze time

• Committed

– Urgent + Highest priority

Location

24

• Invariant

• Initial

COMP 763

IN PRACTICE: UPPAAL

• Synchronization

– Over channel with the same name

• Selection

– Non-deterministic binding of variable over a range

Edge

25

• Guard
– Edge is enabled iff its guard is true

• Update
– Assignment

– State of the system changed only on transition execution

COMP 763

IN PRACTICE: UPPAAL

• Edge labelled ch! (emitter) synchronizes with
edge labelled ch? (receiver)

• Binary: pair of channels chosen
non-deterministically

• Broadcast: emitter channel synchs with all
receiver channels. Not blocking

• Urgent: no delay, no time constraint

Synchronization

26

COMP 763

IN PRACTICE: UPPAAL

• Global and local declarations

– Variables, functions and types

• Automata templates

– Parameterizable extended timed automata
Behavioural classes

• System definition

– System model: concurrent processes, channels and local
and global variables

System Description

27

≡

COMP 763

IN PRACTICE: UPPAAL

• Concurrent processes synchronize via
channels (ch! and ch?)

• CCS parallel composition:

– Action interleaving

– Hand-shake synchronization

• Computationally extremely expensive
(product automaton): on-the-fly verification

Synchronization revisited

28

COMP 763

IN PRACTICE: UPPAAL

• Parameterized templates

• Operations on processes (re-use)

• Priorities

– Channels

– Processes

• Graphical and textual syntax for automata

• More…

More language extensions

29

COMP 763

OVERVIEW

 In the context

 In Theory: Timed Automata

– The language: Definitions and Semantics

– Model Checking and Implementation

 In Practice: UPPAAL

– Language Extensions

– Simulation and Verification

 Small Case Study

 Conclusion on the tool and on the language
30

COMP 763

IN PRACTICE: UPPAAL

• A model checker verifies whether a model
respects a requirement

• UPPAAL uses a simplified version of CTL [5]
(temporal first-order logic)

• State formulae

• Path formulae: reachability, safety, liveness

Verification

31
[5] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Trans.

on Programming Languages and Systems, 8(2):244–263, April, 1986.

COMP 763

IN PRACTICE: UPPAAL

• State formula

– Complex boolean expression, similar to guards but
disjunction is allowed

– deadlock: no action transition going out of a state or of its
delay successors

Verification

32

COMP 763

IN PRACTICE: UPPAAL

• Reachability property

– Sanity check: “something will possibly happen”
Does not mean it will !

–

Verification

33

𝑬 <> 𝝋: there is a path that, starting from an initial state,

reaches a state where 𝝋 is eventually satisfied

COMP 763

IN PRACTICE: UPPAAL

• Safety property

– Invariantly check: “something bad will never happen”

–

–

(the last state is infinite or a leaf)

Verification

34

𝑨[] 𝝋: 𝝋 should be true for all reachable states

𝑬[] 𝝋: there is a maximal path along which 𝝋 is always true

COMP 763

IN PRACTICE: UPPAAL

• Liveness property

– “something will eventually happen”

–

–

Verification

35

𝑨 <> 𝝋: all transitions eventually reach a state where 𝝋 is true

𝝋 ⇢ 𝝍: whenever 𝝋 is satisfied, 𝝍 will eventually be satisfied

COMP 763

OVERVIEW

 In the context

 In Theory: Timed Automata

– The language: Definitions and Semantics

– Model Checking and Implementation

 In Practice: UPPAAL

– Language Extensions

– Simulation and Verification

 Case Study

 Conclusion on the tool and on the language
36

COMP 763

CASE STUDY

37

COMP 763

CASE STUDY

38

• Close to DEVS assignment

• Automaton (statechart-like) version

• More analysis than with Petri-Nets

COMP 763

CASE STUDY

1. Graphical Model Edition

2. Graphical Simulation with recording of
dynamic behaviour

3. Interface for Requirement Specification

4. Model-Checking of safety and liveness

a. Graphical trace debugging

Usage

39

COMP 763

OVERVIEW

 In the context

 In Theory: Timed Automata

– The language: Definitions and Semantics

– Model Checking and Implementation

 In Practice: UPPAAL

– Language Extensions

– Simulation and Verification

 Case Study

 Conclusion on the tool and on the language
40

COMP 763

CONCLUSION ON THE TOOL

• UPPAAL simulator is a process algebra tool

– Process behaviour defined by a timed automaton

– Allow process synchronization

• UPPAAL verifier is a model checker

– Models can be queried for safety and liveness properties

• UPPAAL is an editor for real-time models

– Visual traces for debugging

41

COMP 763

CONCLUSION ON THE TOOL

• Cost-UPPAAL

– Minimal cost reachability analysis

• Distributed-UPPAAL

– Run on multi-processors and clusters

• T-UPPAAL

– Test case generator for black box conformance testing

• World-wide used

– Sweden, Denmark, Belgium, England, Germany, USA

42

COMP 763

CONCLUSION ON THE LANGUAGE

• Template composite state in Statechart
but more scalable with system description

• System group of orthogonal components
with synchronisation possibility

• Process-Oriented ¿Kiltera?

Processes and channels

• Super-porcess? process composition

• Inheritance?

43

≡

≡

COMP 763

MORE REFERENCES
6. B. Berthomieu and M. Diaz. Modeling and verification of timed dependent systems using timed petri nets. IEEE

Transactions on Software Engineering, 17(3):259–273, 1991.

7. G. M. Reed and A. W. Roscoe. A timed model for communicating sequential processes. Theoretical Computer
Science, 58(1-3):249–261, 1988.

8. W. Yi. CCS + time = an interleaving model for real time systems. In Proceedings, 18th Intl’ Colloquium on Automata,
Languages and Programming, LNCS, 510. Springer-Verlag, 1991.

9. X. Nicollin and J. Sifakis. The algebra of timed processes, ATP: Theory and application. Journal of Information and
Computation, 114(1):131–178, 1994.

10. Z. Chaochen. Duration calculus, a logical approach to real-time systems. LNCS, 1548:1–7, 1999.

11. R. Alur and T. A. Henzinger. A really temporal logic. Journal of the ACM, 41(1):181–204, 1994.

12. S. Yovine. Kronos: a verification tool for real-time systems. Journal on Software Tools for Technology Transfer, 1,
October 1997.

UPPAAL website: http://www.it.uu.se/research/group/darts/uppaal/documentation.shtml

UPPAAL’s help manual

44

http://www.it.uu.se/research/group/darts/uppaal/documentation.shtml

